At Home Learning Resources

Grade 5 - Week 4

Grab and Go Meals

Available for Lowell Public Schools Students on Weekdays While School is Closed

Butler (12:45 - 1:30pm)
1140 Gorham St.

Murkland (12:45 - 1:15pm)
350 Adams St.

Greenhalge (10:30 - 11:15am)
149 Enwell St.

Pawtucketville (12 - 12:30pm)
425 West Meadow Rd.

Lincoln (1:30 - 2pm)
300 Chelmsford St.

Robinson (11:30 - 11:45am)
110 June St.

Moody (12 - 12:30pm)
158 Regents St.

STEM Academy (10:30am - 1pm)
43 Highland St.

NEW: Morey (12 - 12:30pm)
180 Pine St.

Meal service at South St. entrance

NEW: Staklosa (11 - 11:30am)
560 Broadway St.

NEW: Westminster Village Apartments (12:45 - 1:15pm)
1307 Pawtucket Blvd.

When you pick up that day's lunch, you can also pick up breakfast for the next morning.
Grade 5 ELA - Week 4

Students can always continue any of the below activities from Weeks 1-3. Those include reading, talking about reading, writing, playing word games, and learning new vocabulary. Students can also go online and practice reading or completing lessons using iReady or Lexia via Clever or Raz Kids or Scholastic Learn or Get Epic!

After these reminders, possible Week 4 activities follow.

If this article is too tricky for your child right now, please feel free to use the Kindergarten - Grade 4 articles. If this is too easy for your child, please feel free to use the Grade 6 articles.

Students in Grade 5 should be reading for 30 minutes or more each day. They can read, watch a read aloud on tv or YouTube, listen to an audio book, or use any of the great resources online.

Talking about Books

Talk about your books with your family. You can retell what you read. Use these stems to help you...

“This reminds me of…”
“The theme was…”
“One thing I learned is…”
“The character was…”

“This makes me realize…”
“In addition to what ______ said…”
“I agree with… because…”
“A question I have is…”

Writing Activities

- Write a new ending to a book you read or keep the story going. Don’t forget to add details. Show some of your feelings. Add some dialogue. What did your characters say? How did they feel? Does it match the original book?
- Make an informational Book. You can write many chapters about your favorite topics or research and choose a new one. Be sure to use different text structures like problem/solution or sequence or cause/effect. Make sure you use expert language like important vocabulary.
- Write an opinion letter, or a speech, or an essay. What is something that you feel strongly about? Plan it using boxes and bullets. You can even do some research to learn more.
- Compare two books, a book and a movie, a book and an article on the same topic. How are they alike? How are they different? What can they teach you?
- Write a graphic novel. What images will you add? What words?
- Write a script. Get your family to perform it.

Vocabulary

- Choose 5 new words in each book or article you read. Practice using them with your family.
- Write complex sentences. See how you can grow your ideas to make them even better.
- Challenge your family to see who can learn the most new words each day. Get a point every time you use a new word. Who will win?
- Play Scrabble or Words with Friends or Boggle or another word game.
These articles are from Time for Kids. You can find them online as well. If you read Safe Travel online, you can have the text read aloud or hear it read in Spanish. https://www.timeforkids.com/g56/safe-travels-2/
The second article, Closing the Gap is also online, but does not have the read aloud option. https://www.timeforkids.com/g34/closing-gap/

Read both texts and complete the activities that follows. Enjoy!

Technology | Places

Closing the Gap

January 24, 2020
Shay Maunz

Students in Talladega County, Alabama, are given a laptop or a tablet. They use them in class and at home.

But Talladega County is in Alabama. Many students live in small towns or in the countryside. Internet access is delivered using towers and underground cables. But they don’t always reach these areas. In some homes, it’s impossible to access the Internet.

Experts call this the “homework gap.” That’s because it’s difficult for some students to do homework online. “When you go home at the end of the day and you can no longer access the same information and technology tools as some of your classmates—that’s the homework gap,” Beth Holland told TIME for Kids. She works at the Consortium for School Networking.

Driving Change

About one in five homes with school-age kids doesn’t have high-speed Internet access. That’s according to a Pew Research study. And 17% of teens say lack of steady Internet sometimes means they can’t do homework. “Kids are being from learning opportunities,” Holland says.
Schools around the country have found creative ways to close the homework gap. In some school libraries, students can borrow mobile hot spots. These use cell-phone networks to access the Internet. Students in some communities have created Wi-Fi maps. These let kids know about local businesses, such as cafés, which provide Internet to their customers.

Talladega County created “rolling study halls.” Many students ride the bus to and from school each day. The average ride each way is an hour. Some are as long as 90 minutes.

In 2018, wireless Internet was installed on six school buses. Now students do homework while they ride. A teacher comes along to help.

Vicky Ozment is the deputy superintendent for Talladega County Schools. She says rolling study halls have “leveled excluded the playing field.”
IN PROGRESS An overpass for wildlife is built on I-90 in 2016. This highway runs through Washington State.

Patty Garvey-Darda loves pikas, which are small mammals related to rabbits. “I think they are about the cutest animals alive,” she told TIME for Kids. Garvey-Darda is a wildlife biologist with the United States Forest Service.

She wants to protect pikas and other creatures from a common threat: vehicles. The Federal Highway Administration says more than a million roadway accidents involving animals happen each year in the U.S. These collisions hurt wildlife and people.

One solution to this problem? Wildlife crossings. In the U.S. and around the world, bridges and underpasses are being built to help animals safely cross roads.

GLOBAL SOLUTION Banff National Park, in Alberta, Canada, is home to some of the most successful wildlife crossings. Completed in 2014, the crossings include 38 underpasses and six overpasses, or bridges. They prevent the park’s animals, such as grizzly bears and cougars, from being struck while trying to cross the Trans-Canada Highway, which bisects the park. According to Parks Canada, Banff’s crossing system has reduced collisions with wildlife by more than 80%.

“People study the effectiveness of the crossings in Banff” as a guide for new construction projects, says Rob Ament. He works for the Western Transportation Institute at Montana State University. Ament notes Banff’s “high quality of design,” which includes fencing to direct animals away from roads.

Ament is using his expertise...
on wildlife crossings for a project in Assam, India. One of the state’s highways is on the border of Kaziranga National Park. Elephants, rhinos, and tigers live there. “Animals leave the park to go up a dry hill during monsoon season,” Ament says. “That means they have to cross the highway.” Plans are in the works for a safe pathway beneath it.

UNDER CONSTRUCTION

Safe pathways for wildlife have been built in several U.S. states, including Arizona, Utah, and Wyoming. In Washington State, Garvey-Darda is part of a major project. She’s helping to design a set of about 20 wildlife crossings. “Banff has been the best model for us,” she says. The Washington State crossings are being built along a 15-mile stretch of Interstate 90 (I-90), one of the country’s longest highways. This section of the highway cuts across the Cascade mountain range. It has disrupted the migration patterns of animals in the area.

Construction of the 20 crossings is expected to be completed by 2029. So far, six underpasses and one overpass have been built. Garvey-Darda says these crossings have already made a difference for migrating animals. “We now have close to 5,000 deer and elk going through the undercrossings,” she says. “All of these animals were potential accidents.”

This spring, Washington locals can volunteer to plant vegetation on the I-90 overpass. Garvey-Darda says the plants will encourage animals, including her beloved pika, to use the crossings. “It’s important to be proactive,” she says, “and not wait until a species is endangered.”

—By Rebecca Mordechai
Roadway Risk

Read “Safe Travels” (March 13, 2020). Use the map below to analyze the likelihood of an animal collision in each state. Then answer the questions below.

1. Create a key. Color the map to indicate states that are high, medium, and low risk for animal collisions.

2. Which state has the highest risk of animal collisions?

3. Which three states have the lowest risk of animal collisions?

4. How likely is it for a person to hit an animal in your state?

Challenge! Look up landform maps, population maps, and/or road maps and try to identify potential causes of the risk in each state. Explain your conclusions.
After reading the articles, “Closing the Gap” and “Safe Travels,” answer the question in writing.

Based on the texts, compare and contrast the problems and solutions in both texts.
These articles talk about taking a problem and finding a solution. Write a narrative (story) that includes a big problem and a solution. Be sure to include characters, setting, follow the story arc, and add interesting details!
Add.

1. \(\frac{7}{8} + \frac{1}{8} \)
2. \(\frac{7}{8} + \frac{1}{4} \)
3. \(\frac{7}{8} + \frac{1}{2} \)

4. \(\frac{3}{4} + \frac{1}{3} \)
5. \(\frac{3}{4} + \frac{2}{3} \)
6. \(\frac{3}{4} + \frac{5}{6} \)

7. \(\frac{1}{5} + \frac{1}{2} \)
8. \(\frac{4}{5} + \frac{1}{2} \)
9. \(\frac{2}{3} + \frac{2}{3} \)

10. \(\frac{5}{8} + \frac{2}{3} \)
11. \(\frac{3}{4} + \frac{3}{5} \)
12. \(\frac{5}{6} + \frac{7}{8} \)

13. What strategy did you use to solve problem 3? Describe each step.
Subtracting Fractions with Unlike Denominators

Subtract.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{2} - \frac{1}{4}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{2} - \frac{3}{8}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{2} - \frac{1}{3}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{3} - \frac{1}{4}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\frac{5}{6} - \frac{5}{12}$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$\frac{3}{4} - \frac{1}{6}$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\frac{7}{8} - \frac{3}{4}$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$\frac{1}{2} - \frac{2}{5}$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\frac{3}{4} - \frac{3}{5}$</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\frac{2}{3} - \frac{3}{5}$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$\frac{5}{6} - \frac{3}{8}$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$\frac{7}{8} - \frac{2}{3}$</td>
<td></td>
</tr>
</tbody>
</table>

13 How could you check your work in problem 4? Describe each step.
Subtracting with Mixed Numbers

Subtract.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2\frac{1}{8} - \frac{1}{4})</td>
<td>(2\frac{1}{8} - \frac{1}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(2\frac{1}{2} - \frac{2}{3})</td>
<td>(2\frac{1}{4} - \frac{1}{3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(7\frac{2}{5} - 3\frac{1}{2})</td>
<td>(5\frac{3}{8} - 4\frac{1}{6})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(6\frac{2}{5} - 3\frac{3}{4})</td>
<td>(9\frac{3}{8} - 3\frac{2}{3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 13

What pattern did you notice in problems 1 through 3? Explain how this helped you subtract.
Estimating in Word Problems with Fractions

Solve the problems. Estimate to tell if your solution is reasonable. Show your work.

1. Jim mails one package that weighs $\frac{3}{8}$ pound and another that weighs $\frac{2}{3}$ pound. What is the total weight of both packages?

2. Rosa needs $5\frac{1}{4}$ yards of ribbon for a crafts project. She already has $2\frac{7}{8}$ yards of ribbon. How many more yards of ribbon does she need to buy?

3. To make fruit punch, Tyrone needs $3\frac{3}{8}$ quarts of orange juice and $3\frac{3}{4}$ quarts of cranberry juice. How many quarts of juice does he need in all?
4 Lin spent $\frac{5}{6}$ hour on math homework and $1\frac{3}{4}$ hours on science homework. How many hours in all did she spend on homework for both subjects?

5 Sandra rode her bike $9\frac{1}{3}$ miles on Monday and $6\frac{4}{5}$ miles on Tuesday. How many more miles did she ride on Monday than on Tuesday?

6 How can you make a high estimate for the sum of two fractions in a word problem?
Fractions as Division

Solve each problem.

1. Roger has 4 gallons of orange juice. He puts the same amount of juice into each of 5 pitchers. How many gallons of orange juice are in 1 pitcher?

2. Marta has 8 cubic feet of potting soil and 3 flower pots. She wants to put the same amount of soil in each pot. How many cubic feet of soil will she put in each flower pot?

3. Greg made 27 ounces of potato salad to serve to 10 guests at a picnic. If each serving is the same size, how much potato salad will each guest receive?

4. Chandra spends 15 minutes doing 4 math problems. She spends the same amount of time on each problem. How many minutes does she spend on each problem?

5. Taylor has 5 yards of gold ribbon to decorate 8 costumes for the school play. She plans to use the same amount of ribbon for each costume. How many yards of ribbon will she use for each costume?

6. DeShawn is using 7 yards of wire fencing to make a play area for his puppy. He wants to cut the fencing into 6 pieces of equal length. How long will each piece of fencing be?

7. What is a division word problem that can be represented by $\frac{4}{3}$?
1. Draw a number line model to represent each multiplication problem. Then solve the problem.
 \[\frac{2}{3} \times \frac{1}{2} \]
 \[\frac{2}{3} \times \frac{1}{2} = \]
 \[\frac{5}{6} \times \frac{3}{4} \]
 \[\frac{5}{6} \times \frac{3}{4} = \]

2. Draw an area model to represent each multiplication problem. Then solve the problem.
 \[\frac{4}{5} \times \frac{2}{3} \]
 \[\frac{4}{5} \times \frac{2}{3} = \]
 \[\frac{3}{4} \times \frac{1}{6} \]
 \[\frac{3}{4} \times \frac{1}{6} = \]

Each multiplication problem is used to find the area of a rectangle. Write the missing digits in the boxes to make each multiplication problem true.

1. length: $\frac{1}{2}$ unit
 width: $\frac{1}{8}$ unit
 $\frac{1}{2} \times \frac{1}{8} = \square$ square unit

2. length: $\frac{1}{3}$ unit
 width: $\frac{1}{4}$ unit
 $\frac{1}{3} \times \frac{1}{4} = \square$ square unit

3. length: $\frac{1}{2}$ unit
 width: $\frac{1}{3}$ unit
 $\frac{1}{2} \times \frac{1}{3} = \square$ square unit

4. length: $\frac{1}{2}$ unit
 width: $\frac{1}{5}$ unit
 $\frac{1}{2} \times \frac{1}{5} = \square$ square unit

5. length: $\frac{1}{4}$ unit
 width: $\frac{1}{4}$ unit
 $\frac{1}{4} \times \frac{1}{4} = \square$

6. length: $\frac{1}{3}$ unit
 width: $\frac{1}{6}$ unit
 $\frac{1}{3} \times \frac{1}{6} = \square$ square unit

7. length: $\frac{1}{2}$ unit
 width: $\frac{1}{7}$ unit
 $\frac{1}{2} \times \frac{1}{7} = \square$

8. length: $\frac{1}{3}$ unit
 width: $\frac{1}{10}$ unit
 $\frac{1}{3} \times \frac{1}{10} = \square$ square unit

9. length: $\frac{1}{5}$ unit
 width: $\frac{1}{6}$ unit
 $\frac{1}{6} \times \frac{1}{5} = \square$ square unit

10. Write missing digits in the boxes to make two different multiplication problems that are both true.

 $\square \times \frac{1}{4} = \frac{1}{\square}$
 $\frac{1}{\square} \times \frac{1}{4} = \frac{1}{\square}$
Each multiplication problem is used to find the area of a rectangle. Write each product.

1. Length: $\frac{1}{2}$ unit
 Width: $\frac{1}{3}$ unit
 $\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ square unit

2. Length: $\frac{2}{3}$ unit
 Width: $\frac{1}{2}$ unit
 $\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$ square unit

3. Length: $\frac{3}{2}$ unit
 Width: $\frac{2}{3}$ unit
 $\frac{3}{2} \times \frac{2}{3} = 1$ square unit

4. Length: $\frac{1}{3}$ unit
 Width: $\frac{1}{4}$ unit
 $\frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$ square unit

5. Length: $\frac{3}{4}$ unit
 Width: $\frac{1}{3}$ unit
 $\frac{3}{4} \times \frac{1}{3} = \frac{1}{4}$ square unit

6. Length: $\frac{5}{3}$ unit
 Width: $\frac{3}{4}$ unit
 $\frac{5}{3} \times \frac{3}{4} = \frac{5}{4}$ square unit

7. Length: $\frac{3}{5}$ unit
 Width: $\frac{1}{2}$ unit
 $\frac{3}{5} \times \frac{1}{2} = \frac{3}{10}$ square unit

8. Length: $\frac{3}{2}$ unit
 Width: $\frac{3}{5}$ unit
 $\frac{3}{2} \times \frac{3}{5} = \frac{9}{10}$ square unit

9. Length: $\frac{3}{2}$ unit
 Width: $\frac{6}{5}$ unit
 $\frac{3}{2} \times \frac{6}{5} = 2$ square units

10. Describe how you could modify one tiling diagram to solve problems 1 through 3.
Through The Eyes of Lowell Spring PHOTO PROJECT

Building a community of students that use their powers of observation
to create a record of their natural world.
Project Idea by Laura Schofield, Bartlett Community Partnership School

AS YOU EXPLORE THE OUTDOORS, BE SURE TO MAINTAIN SOCIAL DISTANCING OF SIX FEET.
WASH YOUR HANDS WHEN YOU RETURN HOME.

1) Choose Option 1 or 2.

OPTION 1 – Pick a subject listed below to photograph:
- Signs of new life
- Branches with new leaf buds
- Animals with their young
- Sunrise or Sunset
- Moonrise or Moonset
- Wild Turkeys
- Bald Eagle
- Birds feeding
- Rabbits or squirrels gathering food
- Beaver, muskrat or otter swimming
- Squirrels & chipmunks collecting food
- Egg sacks
- Evidence of erosion
- Animal scat (poop)
- Beaver lodge
- Nests

OPTION 2 – Pick a theme below & create two photographs that embodies that theme
- Capture a pattern in the natural world
- Capture a change in the natural world

Spring Project Lowell 2020
2) **Take your digital photos.** You may use a phone, tablet or digital camera.

3) **Send your photos to your teacher using Google Classroom or whatever electronic platform used by your class.** Give your pictures a title.

4) **Rules**
 - Be safe when taking photos
 - Take your own photos
 - Please no people or pets in photos (*We love them, but the focus is the natural world*)
 - Names of students will not be posted with photos

Spring Project Lowell 2020
Whales are the biggest animals alive on Earth today. They need a lot to eat. Many whales are filter feeders and rely on tiny, floating crustaceans called krill as the main part of their diet. A blue whale can eat over 3,636 kilograms of krill a day. The krill depend on tinier marine plants for their food. And the plants depend on sunshine for their survival. So if you think carefully, whales depend on a whole lot of sunshine for their survival!

How Many Sun Days Do You Use?

Plants depend on solar energy for their survival. They use the Sun’s energy to make food and store the energy in their leaves, seeds, and fruit. When an animal, like you, eats the fruit from a plant or tree, you are eating this stored solar energy. Plants need different amounts of time in the sunshine to produce the fruits and vegetables we use for food. You might think of it this way: one day of sunshine used and stored by a plant equals one “sun day.” For example, it can take up to 73 days for corn to grow from a seed to the stage when you can eat it off the cob. You are using 73 days of stored solar energy in the corn when you eat it.

Find out how many sun days it takes to ripen your favorite fruits and vegetables.

- Write down your favorite fruits and vegetables in the chart below.

- To find the number of sun days for each food, read seed packets or a seed catalog. Some seed catalogs are available on the Internet, or you might try the library or a garden-supply store. For the cereal, find out what type of grain your cereal is made of (for example, oats or corn).

<table>
<thead>
<tr>
<th>Type of food</th>
<th>Your favorite</th>
<th>Number of sun days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THINK ABOUT IT: Of the seed packets on the following pages, which needs the fewest number of sun days before we can eat it? Why do you think that is?
Welcome to *Lift-the-Flap Timelines*

Lift-the-Flap Timelines put history right into the hands of your students! With this timeline, students lift a flap and read the fun fact. The timeline is designed to delight students while supplementing and supporting the social studies curriculum.

Sure, *Lift-the-Flap Timelines* are packed with interesting historical facts. But this tool is also brimming with the opportunity to build skills found on standardized tests. As students learn about the fascinating people and events that shaped our country, they’ll gain valuable reading practice—not to mention the important skill of reading a timeline. The activity page provides reading comprehension practice, while thought-provoking writing prompts invite students to think critically and respond personally to the timeline. After your students thoroughly explore the timeline inside and out, have them turn it over and display the related famous quote on the back. This banner will inspire your students as they illuminate the idea behind the timeline.

Bon voyage to you and your class as you travel back in time—with a timeline that your students won’t want to put down!

How to Assemble the Timeline

It’s easy to create this timeline. You might demonstrate for students before they assemble one themselves.

1. Print the timeline pages. Make double-sided copies of each page.
2. Trim along the dotted lines at the edges of each page. Tape together.
3. Fold along the gray line.
4. Cut along the dotted lines to create flaps.
me death."

-Patrick Henry
FACT: This stubborn, 22-year-old king wants to make the American colonists help pay the costs of England's Seven Years' War with France. There is conflict between the king and the colonists from the start.

FACT: This proclamation prohibits settlement west of the Appalachian Mountains and requires those already settled in those regions to return east. Roughly 5,000 settlers ignore the proclamation and move west.

FACT: The British Parliament passes the Sugar Act, which puts a tax on molasses. The British argue the tax is necessary to help pay for keeping British troops in the Colonies for their defense.

FACT: This act, passed by Parliament, calls for taxing printed materials such as newspapers and legal documents. A stamp is pressed onto each taxable item. The angry colonists believe the act is “taxation without representation,” and urge the king and Parliament to cancel the act.
Liberty or Give

The Revolutionary War

- **1767** The Townshend Acts
- **1768** British troops arrive in Boston.
- **1770** The Boston Massacre
- **1772** Samuel Adams forms the Committee of Correspondence
- **1773** The Boston Tea Party
FACT: British authorities request help from British troops after constantly being harassed by protesting colonists. A British warship armed with fifty cannons sails into Boston Harbor.

FACT: After an angry mob of colonists harass British soldiers, the troops fire their muskets into the crowd, killing five.

FACT: Rebels form a 21-member committee in Boston to improve communication and coordinate action between the colonies. Within a year, similar committees are organized in the 12 other colonies.

FACT: In an act of rebellion against the Tea Acts, colonists disguised as Mohawk Indians board British ships and dump all 342 containers of tea into Boston Harbor.

FACT: These acts tax imports such as tea, paper, glass, and other goods that come into the colonies. The colonists fight back by refusing to buy those British goods included in the acts.
1774
First Continental Congress is formed

March 25, 1775
Patrick Henry gives his famous “give me liberty or give me death” speech to the First Continental Congress.

April 19
An unordered “shot heard around the world” begins the American Revolution.

May 10
George Washington is appointed general and commander in chief of the new Continental Army.

1776
The Declaration of Independence is signed on July 4th.

1781
The British surrender at Yorktown, Virginia, ending the Revolutionary War.
FACT: The 56 delegates who make up the First Continental Congress are a mixture of moderates (those who seek a peaceful solution to a problem) and radicals (those who favor extreme measures to solve a problem). Patrick Henry speaks for the radicals with his speech.

FACT: At about 4:30 in the morning in Lexington, about 70 armed Massachusetts militiamen stand face to face with some 600 British soldiers. Nobody knows if the first shot was fired by a militiaman or a British soldier.

FACT: The votes for Washington are unanimous.

FACT: Congress chooses a five-man committee to write a draft announcing to Great Britain that the colonies would form a free and independent nation. The committee chooses Thomas Jefferson, the strongest writer in the group, to do the actual writing. The Declaration of Independence describes a new government that had never been tried before—a government that gets its power from the consent of the people it governs.

FACT: As Yorktown is about to be taken, the British send out a flag of truce. General Washington and General Cornwallis work out terms of surrender.
Everything’s in Order!

This list shows 14 events that took place during the Revolutionary War. Write the year in which each event occurred. Then write numbers on each line to show the chronological order of events.

____ British troops arrive in Boston 1768

____ The Boston Tea Party

____ King George III becomes the new king of Great Britain

____ The Townshend Acts

____ The “shot heard around the world” is fired

____ The Boston Massacre

____ The Proclamation of 1763

____ The First Continental Congress is formed

____ George Washington is appointed general and Commander-in-Chief of the new Continental Army

____ The British surrender at Yorktown

____ The Sugar Act

____ The Stamp Act

____ The Declaration of Independence is signed

____ Samuel Adams forms the Committee of Correspondence
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read a book to your family, but don’t let them see the title. Let them take turns to guess the title.</td>
<td>Make a T-chart. Make a list of opposites in your home.</td>
<td>Find food in your house, like crackers or water bottles. Write or draw a word problem. Omar has 36 crackers. Neveah ate twenty-three. How many are left?</td>
<td>Go outside. Write and draw what you see, hear, think, feel, and smell.</td>
<td>Choose two animals. Draw and label their body parts. Create a venn diagram to compare them.</td>
</tr>
<tr>
<td>Monday</td>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
<td>Friday</td>
</tr>
</tbody>
</table>
| Create a shadow puppet story on the wall. Write the title, characters, problem, solution, and ending to your story. | Use crackers or candy to write words you find in your home. | Take a walk in your neighborhood. Use sticks, leaves, and rocks to leave messages for your neighbors. | Think of someone you would like to interview. Write them a letter with your questions. | Use the food in your house to create a menu with prices. Use them to write word problems. **Example:**
Milk = $2.00
Bananas = $3.00
Ice cream = $1.00 |
How Often (1)
Week/Month/Year

My name is ____________________

He rides a bicycle three times a week.

0 = never
1 = once
2 = twice
3 = three times
4 = four times
5 = five times
6 = six times
7 days a week = every day

S M T W T F S

= a week

0 = never
1 = once
2 = twice
3 = three times
4 = four times
5 = five times
6 = six times
7 days a week = every day

S M T W T F S

= a month

S M T W T F S

= a year

goes swimming
plays volleyball
rides a bicycle
gets a haircut
plays piano
goes skiing

He She