At Home Learning Resources

Grade 5 - Week 6

<table>
<thead>
<tr>
<th>Content</th>
<th>Time Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>At least 30 minutes daily (Could be about science, social studies, etc)</td>
</tr>
<tr>
<td>(Read books, watch books read aloud, listen to a book, complete online learning)</td>
<td></td>
</tr>
<tr>
<td>Writing or Word Work or Vocabulary</td>
<td>20-30 minutes daily</td>
</tr>
<tr>
<td>Math</td>
<td>45 minutes daily</td>
</tr>
<tr>
<td>Science</td>
<td>25 minutes daily</td>
</tr>
<tr>
<td>Social Studies</td>
<td>25 minutes daily</td>
</tr>
<tr>
<td>Arts, Physical Education, or Social Emotional Learning</td>
<td>30 minutes daily</td>
</tr>
</tbody>
</table>

These are some time recommendations for each subject. We know everyone’s schedule is different, so do what you can. These times do not need to be in a row/in order, but can be spread throughout the day.
Grade 5 ELA Week 6

Your child can complete any of the activities in weeks 1-5. These can be found on the Lowell Public Schools website: https://www.lowell.k12.ma.us/Page/3801

This week continues the focus on poetry. Read the poems and answer the questions that follow in writing. Then, write your own poems. Be sure to include some of the characteristics of poetry included below. Enjoy!

These are some terms you need to know when reading and writing poetry:

• **Line breaks**: Poets can use line breaks to create a visual and rhythmic pause or place a slight emphasis on the last word in a line. Poets may try breaking the lines in different places, reading poems out loud or to a partner, and deciding where pauses would be appropriate and which words are worth emphasizing as the ends of lines.

• **Stanza breaks**: These are the chapters, section markers, or paragraph breaks of poems; they signal that some kind of change has taken place. Poets may try out different stanza breaks, always thinking about the purpose the break is serving. Different kinds of changes to consider: a shift in an idea, a new voice speaking, time passing, or a new image.

• **Form/rhyme scheme**: After poets have tried a formal structure, they might push themselves to use the form in ways that support what they are really trying to say. For example, in poems with patterns of repetition, writers make sure that the words or lines they choose to repeat are significant to the core images and ideas in the poem. As a revision, poets can try different words or lines until the most appropriate ones are discovered. Similarly, rhyming words catch attention.

• **Shape**: Poets can write poems whose shape matches either an idea or an image that they are conveying. “Concrete poems” literally take the shape of their subjects; other poems take on a metaphorical shape by moving down the page in ways that suggest a kind of movement, a form in nature, or a physical structure.

• **White space**: Poets may use the blank space on the page to support ideas or images in the poem; the space on the page can be a metaphorical setting for the poem. If there is a lot of white space left on the page, it might suggest a setting of emptiness or silence; if the words are crowded onto the page, the poem might suggest a setting of chaos or noise.

• **Alliteration**: Poets can write phrases or whole lines that use the same starting sound as a way to call attention to that phrase or line. Poets think about the tone of the poem in the relevant section and choose starting sounds that match that tone. Hard sounds might indicate a harsh or unforgiving setting (“The car crashed, careening in crazy curlicues”); soft sounds might indicate a soothing or comforting feeling (“The sea sighed, sifting across the sand”).

• **Onomatopoeia**: Poets choose words that sound like what they mean. Poets search for the perfect word for an action or description by trying out many verbs and adjectives and by searching for words that have a double-edged meaning (“The roach scuttled across the floor”).

• **Simile, metaphor, imagery**: Poets choose simile and metaphor when they want to compare two things in surprising, unconventional ways. Poets can write images the same way they created the images in other units of study—through envisioning. In poetry, however, often an image or metaphor is woven throughout a poem and is central to its meaning or the feeling that lingers when the poem is finished.
Read the poems. Use these cards to help you think/write about the poems. Then write your own poem. Use the following poems as your inspiration.

Summarize the poem in at least two sentences.	How did the poem make you feel about the topic or event?
Describe what you visualized while you were reading the poem.	What figurative language does the poet use? Write the example from the poem, the type, and the meaning.
What is the author’s tone (or attitude) toward the topic of the poem?	Why do you think the poem was written?
What connections from your life can you make to this poem?	Compare this poem with another poem you have read.
Harriet Tubman

Eloise Greenfield

Harriet Tubman didn't take no stuff
Wasn't scared of nothing neither
Didn't come in this world to be no slave
And wasn't going to stay one either

"Farewell!" she sang to her friends one night
She was mighty sad to leave 'em
But she ran away that dark, hot night
Ran looking for her freedom
She ran to the woods and she ran through the woods
With the slave catchers right behind her
And she kept on going till she got to the North
Where those mean men couldn't find her

Nineteen times she went back South
To get three hundred others
She ran for her freedom nineteen times
To save Black sisters and brothers
Harriet Tubman didn't take no stuff
Wasn't scared of nothing neither
Didn't come in this world to be no slave
And didn't stay one either

And didn't stay one either

From Honey, I Love and Other Love Poems: 25th Anniversary Edition by Eloise Greenfield. Copyright © 2003 by Eloise Greenfield. Reprinted by permission of by HarperCollins Children's Books. All rights reserved.
Our teacher gave detention to the fountains in the hall. She handed extra homework to the artwork on the wall.

We saw her point a finger at a banner and a sign. She said their bad behavior was completely out of line.

The principal approached her and said, “What is all this fuss? I heard you tried to punish all the tires on a bus.

“You’ve made the teachers angry by disrupting all their classes, so if you want to keep this job, you have to wear your glasses!”
Drum Dream Girl

BY MARGARITA ENGLE

On an island of music
in a city of drumbeats
the drum dream girl
dreamed

of pounding tall conga drums
tapping small bongó drums
and boom boom booming
with long, loud sticks
on big, round, silvery
moon-bright timbales.

But everyone
on the island of music
in the city of drumbeats
believed that only boys
should play drums

so the drum dream girl
had to keep dreaming
quiet
secret
drumbeat
dreams.

At outdoor cafés that looked like gardens
she heard drums played by men
but when she closed her eyes
she could also hear
her own imaginary
music.

When she walked under
wind-wavy palm trees
in a flower-bright park
she heard the whir of parrot wings
the clack of woodpecker beaks
the dancing tap
of her own footsteps
and the comforting pat of her own heartbeat.

At carnivals, she listened to the rattling beat of towering dancers on stilts

and the dragon clang of costumed drummers wearing huge masks.

At home, her fingertips rolled out their own dreamy drum rhythm on tables and chairs…

and even though everyone kept reminding her that girls on the island of music have never played drums

the brave drum dream girl dared to play tall conga drums small bongó drums and big, round, silvery moon-bright timbales.

Her hands seemed to fly as they rippled rapped and pounded all the rhythms of her drum dreams.

Her big sisters were so excited that they invited her to join their new all-girl dance band
but their father said only boys should play drums.

So the drum dream girl had to keep dreaming and drumming alone until finally her father offered to find a music teacher who could decide if her drums deserved to be heard.

The drum dream girl’s teacher was amazed. The girl knew so much but he taught her more and more and more and she practiced and she practiced and she practiced until the teacher agreed that she was ready to play her small bongó drums outdoors at a starlit café that looked like a garden where everyone who heard her dream-bright music sang and danced and decided that girls should always be allowed to play drums
and both girls and boys
should feel free
to dream.

Notes:
This poem was inspired by the childhood of a Chinese-African-Cuban girl who broke Cuba's traditional taboo against female drummers. In 1932, at the age of ten, Millo Castro Zaldañriaga performed with her older sisters as Anacaona, Cuba's first "all-girl dance band." Millo became a world-famous musician, playing alongside all the American jazz greats of the era. At age fifteen, she played her bongó drums at a New York birthday celebration for U.S. president Franklin Delano Roosevelt, where she was enthusiastically cheered by First Lady Eleanor Roosevelt. There are now many female drummers in Cuba. Thanks to Millo's courage, becoming a drummer is no longer an unattainable dream for girls on the island. [note from the author]

Eating Words

BY KATHERINE HAUTH

When you know
that *vore* means *eat*,
you will know
that *insectivores* feed
on grasshoppers, moths, and butterflies,
mosquitoes, bees, and plain-old flies.

When you know
that *carni* means *meat*,
you will know
that *carnivores* eat
snakes and lizards, deer and lamb,
carrion, birds, fish, and ham.

When you know
that *herb* means *plant*,
you will know
that *herbivores* CAN'T
eat anything that moves on a foot,
just foods that spring up from a root.

When you know
that *omni* means *all*,
you will know
that *omnivores* call
Everything
they can suck or chew—
sometimes even me or you—
food.

First Saturday in June

BY EILEEN SPINELLI

Fifty-nine days to go.

I can't find my purple beach towel.
I can't even get to my closet without walking across a sea of dirty socks.

Mom pokes her head into my doorway, says: "Time to clean your room, Sophie." And I have to admit she's right.

And it's not that cleaning my room is the worst thing to do. It's just that there are so many other better things to do, like— painting my toenails Strawberry Pink, eating a huge stack of Uncle Joe's pancakes, dreaming of riding the Ferris wheel, thinking up a story to tell around the campfire on Scary Story Night, painting shells, riding waves . . . all the fun, wonderful, sandy, sunny things we do at Summerhouse Time.

Kipton's Scale

a. Kipton has a digital scale. He puts a marshmallow on the scale and it reads 7.2 grams. How much would you expect 10 marshmallows to weigh? Why?

b. Kipton takes the marshmallows off the scale. He then puts on 10 jellybeans and then scale reads 12.0 grams. How much would you expect 1 jellybean to weigh? Why?

c. Kipton then takes off the jellybeans and puts on 10 brand-new pink erasers. The scale reads 312.4 grams. How much would you expect 1,000 pink erasers to weigh? Why?
Multiply by Powers of Ten

Find each product.

\begin{align*}
58 \times 10 &= \\
54 \times 10 &= \\
2 \times 0.001 &= \\
54 \times 1,000 &= \\
33 \times 10 &= \\
78 \times 10^2 &= \\
12 \times 10^2 &= \\
31 \times 10^2 &= \\
36 \times 10^2 &= \\
99 \times 10^1 &= \\
75 \times 10 &= \\
21 \times 0.1 &= \\
3 \times 0.1 &= \\
71 \times 100 &= \\
24 \times 100 &= \\
45 \times 10^2 &= \\
77 \times 10^1 &= \\
23 \times 10^3 &= \\
39 \times 10^1 &= \\
66 \times 10^1 &=
\end{align*}
Multiplying by 10, 100, and 1,000

Write the answers in the boxes.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>472×10</td>
<td>$4,720$</td>
</tr>
<tr>
<td>324×100</td>
<td>$32,400$</td>
</tr>
<tr>
<td>$57 \times 1,000$</td>
<td>$57,000$</td>
</tr>
</tbody>
</table>

Write the answers in the boxes.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>426×10</td>
<td>____</td>
</tr>
<tr>
<td>319×10</td>
<td>____</td>
</tr>
<tr>
<td>584×10</td>
<td>____</td>
</tr>
<tr>
<td>740×10</td>
<td>____</td>
</tr>
<tr>
<td>985×10</td>
<td>____</td>
</tr>
<tr>
<td>612×10</td>
<td>____</td>
</tr>
<tr>
<td>102×100</td>
<td>____</td>
</tr>
<tr>
<td>725×100</td>
<td>____</td>
</tr>
<tr>
<td>383×100</td>
<td>____</td>
</tr>
<tr>
<td>909×100</td>
<td>____</td>
</tr>
<tr>
<td>651×100</td>
<td>____</td>
</tr>
<tr>
<td>737×100</td>
<td>____</td>
</tr>
<tr>
<td>$4,000 \times 10$</td>
<td>____</td>
</tr>
<tr>
<td>$5,649 \times 10$</td>
<td>____</td>
</tr>
<tr>
<td>$8,714 \times 10$</td>
<td>____</td>
</tr>
<tr>
<td>$6,302 \times 100$</td>
<td>____</td>
</tr>
<tr>
<td>$9,711 \times 100$</td>
<td>____</td>
</tr>
<tr>
<td>$4,826 \times 100$</td>
<td>____</td>
</tr>
</tbody>
</table>

Find the number that has been multiplied by 100.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ $\times 100$</td>
<td>163,100</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>841,300</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>636,500</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>521,000</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>562,300</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>864,700</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>839,100</td>
</tr>
<tr>
<td>____ $\times 100$</td>
<td>537,000</td>
</tr>
</tbody>
</table>

Write the answers in the boxes.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4,732 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$9,105 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$6,211 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$4,711 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$11,264 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$84,322 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$47,544 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$75,543 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$59,223 \times 1,000$</td>
<td>____</td>
</tr>
<tr>
<td>$84,326 \times 1,000$</td>
<td>____</td>
</tr>
</tbody>
</table>

Find the number that has been multiplied by 1,000.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ $\times 1,000$</td>
<td>764,000</td>
</tr>
<tr>
<td>____ $\times 1,000$</td>
<td>9,810,000</td>
</tr>
<tr>
<td>____ $\times 1,000$</td>
<td>5,372,000</td>
</tr>
<tr>
<td>____ $\times 1,000$</td>
<td>6,141,000</td>
</tr>
<tr>
<td>____ $\times 1,000$</td>
<td>4,169,000</td>
</tr>
<tr>
<td>____ $\times 1,000$</td>
<td>8,399,000</td>
</tr>
</tbody>
</table>
Marta's Multiplication Error

Marta made an error while finding the product 84.15×10.

I wanted to multiply 84.15×10, so I put a zero at the end to get my answer:

$84.15 \times 10 = 84.150$

In your own words, explain Marta's misunderstanding. Please explain what she should do to get the correct answer and include the correct answer in your response.
Expanded Form with Decimals

Write each number in expanded form.

224.41

\((2 \times 100) + (2 \times 10) + (4 \times 1) + (4 \times 1/10) + (1 \times 1/100)\)

124.59

707.04

685.99

815.54

Write each number in standard form.

\((1 \times 10) + (8 \times 1) + (1 \times 1/10) + (8 \times 1/100)\)

18.18

\((8 \times 100) + (4 \times 10) + (1 \times 1/10) + (9 \times 1/100)\)

\((6 \times 100) + (2 \times 10) + (8 \times 1/10) + (1 \times 1/100)\)

\((1 \times 100) + (5 \times 1) + (4 \times 1/10) + (6 \times 1/100)\)

\((6 \times 100) + (1 \times 1) + (5 \times 1/10) + (6 \times 1/100)\)

\((3 \times 100) + (1 \times 10) + (9 \times 1) + (1 \times 1/10) + (2 \times 1/100)\)
Write the correct letter on the blank line next to each decimal.

Decimal Number Line

0.38 c 1.16 _____ 1.75 _____ 0.54 _____

0.70 _____ 1.47 _____ 0.02 _____ 1.50 _____

1.29 _____ 0.25 _____ 1.83 _____ 0.91 _____

5.90 _____ 5.34 _____ 6.43 _____ 5.55 _____

6.67 _____ 6.08 _____ 5.01 _____ 7.00 _____

5.17 _____ 6.83 _____ 5.69 _____ 6.24 _____
Mr. Hower can buy a computer with a down payment of $510 and 8 monthly payments of $35.75. If he pays cash for the computer, the cost is $699.99. How much money will he save if he pays cash for the computer instead of paying for it in monthly payments?
Calculate each sum or difference.

\[800.54 + 90.52 =\]
\[343.4 + 5.607 =\]
\[94.9 - 41.871 =\]
\[809.144 - 15.96 =\]
\[803.309 - 133.36 =\]
\[767.3 - 24.9 =\]
\[489.08 - 4.2 =\]
\[921.74 + 2.7 =\]
\[384.94 + 17.348 =\]
\[260.65 - 40.9 =\]
\[67.1 - 1.19 =\]
\[35.438 - 17.2 =\]
\[686.4 - 199.61 =\]
\[6.356 + 5.8 =\]
\[75.715 + 30.5 =\]
\[89.88 - 48.8 =\]
\[3.7 + 1.5 =\]
\[64.32 + 21.63 =\]
\[875.75 + 26.64 =\]
\[656.86 + 46.37 =\]
Rounding Decimals

Round each decimal number to the nearest place indicated.

1. 0.43 ________ whole number

2. 6.02 ________ tenth

3. 6.651 ________ whole number

4. 0.202 ________ hundredth

5. 7.22 ________ whole number

6. 0.660 ________ tenth

7. 8.28 ________ tenth

8. 9.87 ________ whole number

9. 7.0760 ________ hundredth

10. 3.629 ________ tenth

11. 7.865 ________ whole number

12. 5.2182 ________ thousandth

13. 5.6967 ________ thousandth

14. 2.9 ________ whole number

15. 4.0 ________ whole number

16. 7.46 ________ tenth

17. 2.39 ________ tenth

18. 3.896 ________ whole number

19. 7.8143 ________ whole number

20. 9.3959 ________ hundredth
DIY ACTIVITY

MAKE YOUR OWN COMPOST

GRADERS 3–5

OBJECTIVES
- Use microbial decomposition to dispose of food waste.
- Recognize that decomposers are present all around us.
- Understand the role of decomposition in nature.

PROCEDURE
1. Put on your gloves.
2. Mix food waste together in a large bowl or other container.
3. Add a layer of dry twigs at the bottom of the large container.
4. Then add a layer of food waste on top of the twigs.
5. Next add a layer of dry compost (dry leaves).
6. Using the watering can, sprinkle water over the top till damp.
7. Leave your compost for natural decomposition.
8. The process is slow (could take 3-6 months) but eventually you will have a rich soil like material to use in a garden.

WHAT IS GOING ON HERE?
Decomposition is nature’s way of recycling. Dead plants and animals are broken down into basic components that become part of the Earth. Decomposition happens when decomposers, such as insects, bacteria, and fungi, eat and digest plant and animal remains.

FURTHER EXPLORATION
Research which types of food waste can and cannot be composted and create posters to share with your family and friends. You might want to post one on your composting container! You can also start a composting program at school!

⚠️ Wear gloves when working with food waste. Do not compost meat or dairy products.

MATERIALS NEEDED
- Twigs
- Dry leaves
- Food waste (such as egg shells, coffee grounds, tea bags, apple cores, orange and banana peels—no meat)
- Plastic gloves
- Large bowl or other container for mixing
- Large plant pot or other container with holes on the bottom
- Watering can
1. Food of almost any kind can be traced back to what? __

2. True or false: animals eat other animals to get energy and building blocks to help them grow and repair.

3. Which is an example of a producer?
 a. Lettuce b. Mouse c. Human d. Fish

4. What is an animal that eats producers called? _________________________________

5. Fill in the blanks below using the following words to model the flow of energy from the sun to a human:
 cow, grass, human, sun.

 Grass uses energy from the _________________ to grow. A _________________ then eats the grass. When a
 _________________ eats a hamburger, energy is again passed up the food chain.

6. Draw a 3-step food chain from left to right starting with the sun:

 ![Food chain diagram]

7. What is a food web? ___

8. True or false: a zebra is an example of an apex predator. ____________________________

9. What role do apex predators play in ecosystems? __

10. What do decomposers do? __

Optional STEM Challenge

PAPER TABLE

YOUR CHALLENGE

Design and build a table out of newspaper tubes. Make it at least eight inches tall and strong enough to hold a heavy book.

BRAINSTORM & DESIGN

Look at your materials and think about the questions below. Then sketch your ideas on a piece of paper or in your design notebook.

1. How can you make a strong tube out of a piece of newspaper? (This challenge uses tubes because it takes more force to crumple paper when it’s shaped as a tube.)

2. How can you arrange the tubes to make a strong, stable table?

3. How can you support the table legs to keep them from tilting or twisting?

4. How level and big does the table’s top need to be to support a heavy book?

BUILD, TEST, EVALUATE & REDESIGN

Use the materials to build your table. Then test it by carefully setting a heavy book on it. When you test, your design may not work as planned. If things don’t work out, it’s an opportunity—not a mistake! When engineers solve a problem, they try different ideas, learn from mistakes, and try again. Study the problems and then redesign. For example, if:

- the tubes start to unroll—Re-roll them so they are tighter. A tube shape lets the load (i.e., the book) push on every part of the paper, not just one section of it. Whether they’re building tables, buildings, or bridges, **load distribution** is a feature engineers think carefully about.

- the legs tilt or twist—Find a way to stabilize and support them. Also check if the table is lopsided, too high, or has legs that are damaged or not well braced.

- a tube buckles when you add weight—Support or reinforce the weak area, use a wider or thicker-walled tube, or replace the tube if it’s badly damaged. Changing the shape of a material affects its strength. Shapes that spread a load well are strong. Dents, creases, and wrinkles that put stress on some areas more than others make a material weaker.

- the table collapses—Make its base as sturdy as possible. Also, a table with a lot of triangular supports tends to be quite strong. A **truss** is a large, strong support beam. It is built from short boards or metal rods that are arranged as a series of triangles. Engineers often use trusses in bridges, buildings, and towers.

MATERIALS (per person)

- 1 piece of cardboard or chipboard (approximately 8 ½ x 11 inches)
- heavy book (e.g., a textbook or telephone book)
- masking tape
- 8 sheets of newspaper
TAKE IT TO THE NEXT LEVEL

- If a little is good, a lot is better! Build a table that can hold two or more heavy books.
- The sky’s the limit. Build a table that can hold a heavy book 16 inches above the ground.
- Matching furniture! Build a chair out of newspaper.

ENGINEERING IN ACTION

A paper house? Better leave your matches outside! Check out these items that engineers made out of paper. Then choose from the list and see if you can figure out the year each item was invented.

Years these items were invented: 1922; 1931; 1967; 1995; 2004; 2007

A. Paper Church
After a big earthquake in Japan, engineers quickly made a building by stretching a paper “skin” across 58 paper tubes, each over 16 feet long. The church was only meant to be a temporary place of worship. But it’s still standing today.

B. Paper Video Disc
This disc holds more than three times as much data as a standard DVD and is much better for the environment. But you’ll have to stay tuned—there’s no release date set.

C. Paper House
An engineer built a vacation home out of newspaper. He glued newspapers into one-inch-thick slabs and then used them to make the walls. It’s still standing!

D. Paper Towels
By mistake, a factory made rolls of paper that were too thick for toilet paper but too weak for most other uses. But where others see problems, engineers see possibilities. The paper was sold as “Sani-Towels,” which soon became known as paper towels.

E. Paper Batteries
They’re smaller than a postage stamp but can power a light bulb! And they decompose in landfills. Engineers are still figuring out how to get them to work with all our gadgets.

F. Paper Dresses
Engineers created paper outfits that could be printed with designs. They were sold in boutiques and in stationery stores, where you could get a tablecloth to match!

MAKE IT ONLINE

Paper guitar?
Build a great-sounding guitar out of a box, string, wood, and wire. See how on Make Magazine’s project page at makezine.com/designsquad.

Watch the DESIGN SQUAD Cardboard Furniture episode on PBS or online at pbs.org/designsquad.

© 2008 WGBH Educational Foundation. Design Squad and logo are trademarks of WGBH Educational Foundation. All rights reserved. All third party trademarks are the property of their respective owners. Used with permission. Design Squad is produced by WGBH Boston.
Loyalists, fence-sitters and patriots in the American Revolution

By USHistory.org, adapted by Newsela staff on 01.27.20
Word Count 578
Level 690L

The American Revolution divided colonists over which country they supported. But how many American colonists supported independence from Great Britain and how many opposed it? It is impossible to know exactly.

For years it was widely believed that one-third of the colonists favored the American Revolution. Another one-third was assumed to want to stay with Britain. The last third was undecided. These estimates stem from the writings of John Adams in 1815. Adams was one of the most important founding fathers. He also served as the new country’s second president.

Historians now believe that Adams was referring to American attitudes toward the French Revolution (1789–1799). In fact, he was not writing about the American Revolution at all.

Recent historical research suggests about 20 percent of the colonists were loyalists. Loyalists wanted to stay with Britain. Another small but important group was the patriots. They believed
American independence was the only option. But the largest group is largely ignored. These colonists were neutral, or fence-sitters. They did not commit strongly to either side.

On The Fence

The war became a struggle to win popular support. The patriots worked to win the hearts and minds of fellow colonists. They knew their success depended on support from the public. It would not even matter if the British won the war. The British Crown would lose the support of too many colonists. Sooner or later, independence would be won.

There were many reasons for supporting either side. The British recognized the need to maintain popular support in the colonies. Some colonists joined either side because of personal gain or glory. The loyalists might have supported Britain out of devotion to the mother country. Farmers made money by selling goods to British forces and patriots.

In the long run, the Patriots won the battle for popular support. They established Committees of Correspondence. These groups published opinion pieces. They aimed to sway the fence-sitters to join the patriot cause. Perhaps the most famous is Thomas Paine's "Common Sense." This pamphlet stirred a growing sense of patriotic feeling as Americans.

Political tension between patriots and loyalists split communities. Neighbors became enemies. Patriots often humiliated loyalists publicly. Loyalists had their property vandalized, robbed or burned. The patriots also controlled public debate. They used intimidation to silence pro-British opinions.

The revolution even divided some colonial families. William Franklin was the son of founding father and patriot Benjamin Franklin. William was a loyalist governor of New Jersey. He supported British efforts during the war. After the American victory, he rarely, if ever, spoke to his father, Ben.

What Happened To The Loyalists?

After the war, a large percentage of loyalists left the United States. About 80,000 of them fled to Canada or Britain. Loyalists were often wealthy, educated and older. Colonial society changed when they left.

During the war, most loyalists only wanted to preserve their way of life. However, American history often labels these people as traitors. After all, history is always written by the winners.
Loyalists, Fence-Sitters, and Patriots in the American Revolution

Write a persuasive essay aimed at a fence-sitter. (That is someone who can't decide either way on an issue.) Choose the point of view of either a loyalist or a patriot and try to convince the fence-sitter to share your point of view. Use three details to support your argument.

__
__
__
__
ESL at Home 3-5 Weeks 5-6
Use notebook paper to complete these activities. Do one each day!

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
</table>
| **Who is your favorite book or movie character?**
Write or draw what would happen if you met them in real life. | **Look at the food in your home. Create a pretend menu for lunch.**
Example:
Pretzel and jelly sandwich with a side of tuna fish: $4.67
Chocolate chip scrambled eggs with salsa ice cream: $5.99 | **Unscramble these animal names, then draw the animal.**
caro
rwmo
cnaotu
rumle | **Make a t-chart of healthy and unhealthy foods in your home.** | **Create your own superhero. Draw and label a costume and superpowers. Write about a time the superhero saved someone.** |

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use boxes or books to create a ramp. Find five things to roll down the ramp. What rolls the farthest? What rolls the shortest?</td>
<td>Design a plan for your dream neighborhood. Draw and label a map of the homes, streets, and businesses you would have.</td>
<td>Create a commercial for your new neighborhood. Tell what makes it special and why people should move there.</td>
<td>Listen to any song. Write down any similes you hear. Ex: “I came in LIKE a wrecking ball.”</td>
<td>Choose two animals, like a horse and an alligator. Imagine what they would look like if they were put together. Draw it, and write about its habitat, predators, and prey.</td>
</tr>
</tbody>
</table>